This series consists of talks in the area of Condensed Matter.
Topological aspects of physical systems, including the called topological states of matter, have become hot topics in the frontiers of physics in recent years. Here I would like to present a mathematically "popular" talk for professional physicists for a highlight or overview of how one can systematize knowledge of topological aspects of quantum field theories. Our starting points are Descent Equations and Gauge Structure in Configuration Space in Field Theory. (The audience needs only to know the meaning of "differential forms".)
The orbital angular momentum in a chiral superfluid has posed a paradox for several decades. For example, for the $p+ip$-wave superfluid of $N$ fermions, the total orbital angular momentum should be $N/2$ if all the fermions form Cooper pairs. On the other hand, it appears to be substantially suppressed from $N/2$, considering that only the fermions near the Fermi surface would be affected by the pairing interaction. To resolve the long-standing question, we studied chiral superfluids in a two-dimensional circular well, in terms of a conserved charge and spectral flows.
Matrix product operators form a natural language for describing topological quantum order. I will discuss how they arise as symmetries in PEPS, how anyon excitations arise as end points on them, and how the virtual indices of the MPO's provide a tensor product structure for the logical qubits in topological quantum computation.
Using the method of flux fusion anomaly test recently developed by M. Hermele and X. Chen (arXiv:1508.00573), we show that the possible ways of fractionalize crystal symmetry is greatly restricted if we assume the spin liquid has an SU(2) spin rotation symmetry and the spinon carries a half-integer spin. For a Z_2 spin liquid, under these assumptions the vison can only take the crystal symmetry fractionalization described by the Ising gauge theory. For a chiral spin liquid these assumptions imply that the spinon must also take fractionalized quantum numbers of crystal symmetries.
In this talk, we will analyze the properties of the bosonic $\nu = 1$ Moore-Read state when used to build a state
which is strongly believed to be a non-Abelian spin-1 chiral spin liquid state [1]. In this state the bosonic $\nu = 1$
A pedagogic introduction will be given to: i) Emergent Majorana fermions and Majorana zero modes in certain condensed matter models and ii) Kondo insulators. This will be followed by discussion of a remarkable Quantum Oscillation Anomaly seen in recent experiments in SmB6, a Kondo insulator, by the Cambridge group [1], as providing evidence [2] for presence of Majorana fermi sea, in an unexpected place. We show a counter intuitive result that these Majorana fermions though neutral, exhibit Landau diamagnetism.
Fractional quantum Hall effect in the sequence of filling factors n/(2np +- 1) is well understood by the integer quantum Hall effect of the composite fermions at the filling factor n. A composite fermion (CF) is a bound state of an electron and 2p number of quantized vortices. However, the experimentally observed states such as 4/11, 5/13, and 3/8 which are between 1/3 and 2/5 cannot be accommodated in the conventional noninteracting theory of composite fermions. The interaction between CFs in partially filled second effective Landau levels of CFs is important for these states.