This series consists of talks in the area of Condensed Matter.
Recent years have seen a renewed interest, both theoretically and experimentally, in the search for topological states of matter. On the theoretical side, while much progress has been achieved in providing a general classification of non-interacting topological states, the fate of these phases in the presence of strong interactions remains an open question. The purpose of this talk is to describe recent developments on this front.
The description of non-Fermi liquid metals is one of the central problems in the theory of correlated electron systems. I present a holographic theory which builds on general features of the thermal entropy density and the entanglement entropy. Remarkable connections emerge between the holographic approach, and the postulated strong-coupling behavior of the field-theoretic approach.
Although the typical physical system achieves an ordered state at low temperatures, spin liquids stay disordered even in their ground state. In addition to an increasing number of experimental candidates for spin liquids, recent numerical work from Meng, et. al and Yan, et. al. has supplied strong numerical evidence for natural Hamiltonians having spin liquid ground states. Their featureless nature, though, makes learning about these states particularly difficult. In this talk, we explore what variational ansatz can teach us about them.
The entanglement spectrum denotes the eigenvalues of the reduced density matrix of a region in the ground state of a many-body system. Given these eigenvalues, one can compute the entanglement entropy of the region, but the full spectrum contains much more information. I will review geometric methods to extract this spectrum for special subregions in lorentz and conformally invariant field theories (and any theory whose universal low energy physics is captured by such a field theory).
Rare earth pyrochlores, with a chemical formula A2B2O7, exhibit many interesting features in A site spin system. Depending on A site rare earth elements, spin ice and magnetically ordered phases are shown in several experiments. Moreover, they have been also focused as possible candidates of U(1) spin liquid. In order to explore such versatile phases, we study the pseudospin-1/2 model, which is quite generic to describe rare earth pyrochlores with integer spins, in the presence of spin-orbit coupling and crystalline electric field.
Novel phases can result from the interplay of electronic interactions and spin orbit coupling. In the first part, we discuss a simple Hubbard model for the pyrochlore iridates, whose phase diagram contains topological insulator (TI) and various magnetic phases. The latter host the novel topological Weyl semimetal, whose excitations behave like Weyl fermions. In the second part we study a novel spin liquid that was proposed to arise in the iridates, the 3D topological Mott insulator: a fractionalized TI where the neutral spinons acquire a topologically non-trivial band structure.
A fractional quantized Hall nematic (FQHN) is a novel phase in which a fractional quantum Hall conductance coexists with broken rotational symmetry characteristic of a nematic. Both the topological and symmetry-breaking order present are essential for the description of the state, e..g, in terms of transport properties. Remarkably, such a state has recently been observed by Xia et al. (cond-mat/1109.3219) in a quantum Hall sample at 7/3 filling fraction.
Recent years have seen a renewed interest, both theoretically and experimentally, in the search for topological states of matter. On the theoretical side, while much progress has been achieved in providing a general classification of non-interacting topological states, the fate of these phases in the presence of strong interactions remains an open question. The purpose of this talk is to describe recent developments on this front.
The scaling of entanglement entropy, and more recently the full entanglement spectrum, have become useful tools for characterizing certain universal features of quantum many-body systems.
The multiscale entanglement renormalization ansatz can be reformulated in terms of a causality constraint on discrete quantum dynamics. This causal structure is that of de Sitter space with a flat spacelike boundary, where the volume of a spacetime region corresponds to the number of variational parameters it contains.