Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.

Solomon Owerre

Portrait de Solomon Owerre

Area of Research:
Phone: (519) 569-7600 x7520

Research Interests

My research work encompasses frustrated magnets, topological phases of matter, Floquet topological systems, and machine learning. I also have a keen interest in the application of quantum field theory to condensed matter systems. I have worked on different branches of condensed matter physics ranging from instantons, hard-core bosons, quantum spin ice, to topological insulators and semimetals. In recent years, my research has focused mainly on topological phases of matter in bosonic as well as fermionic systems. In particular, the majority of my research has been devoted to developing the notion of topological semimetals and insulators to bosonic systems in quantum magnetism. I have made tremendous progress in this field, accompanied by numerous well-recognized sole authored publications. Below is the list of selected publications.

Awards

  • Best Ph.D. Student Awards: University of Montreal. Laboratoire CRM PhysMath prize and DTP/WITP prize
  • Perimeter International Scholar Awards: Perimeter Institute

Recent Publications

  • S. A. Owerre. Floquet Weyl Magnons. Scientific Reports 8, 10098 (2018). arXiv: 1801.03499.
  • S. A. Owerre. Photoinduced Topological Phase Transitions in Topological Magnon Insulators. Scientific Reports 8, 4431 (2018). arXiv: 1801.04932.
  • S. A. Owerre. Dirac Nodal Line Magnons in Layered Honeycomb Antiferromagnets. Annals of Physics (2018) (under review). arXiv: 1801.03498.
  • S. A. Owerre. Two-Dimensional Dirac Nodal-Loop Magnons in Collinear Antiferromagnets. J. Phys.: Cond. Mat. 30, 28LT01 (2018). arXiv: 1803.06349
  • S. A. Owerre. Strain-Induced Topological Magnon Phase Transitions: Applications to Kagome- Lattice Ferromagnets. J. Phys.: Conden. Mat. 30, 245803 (2018). arXiv: 1802.10095.
  • S. A. Owerre. Weyl Magnons in Noncoplanar Stacked Kagome Antiferromagnets. Phys. Rev. B 97, 094412 (2018). arXiv: 1708.04240.
  • S. A. Owerre. Magnonic Triply-Degenerate Nodal Points. Europhys. Lett. 120, 57002 (2017). arXiv: 1711.00007.
  • S. A. Owerre. Topological Thermal Hall Effect due to Weyl Magnons. Can. J. Phys. (2018), (in press). arXiv: 1709.07879.
  • S. A. Owerre. Topological Magnon Bands and Unconventional Thermal Hall Effect on the Frustrated Honeycomb and Bilayer Triangular Lattice. J. Phys.: Cond. Mat. 29, 385801 (2017). arXiv: 1705.08892.
  • S. A. Owerre. Dirac Magnon Nodal Loops in Quasi-2D Quantum Magnets. Scientific Reports 7, 6931 (2017). arXiv: 1703.07783.
  • S. A. Owerre. Topological Magnetic Excitations on the Distorted Kagome Antiferromagnets: Applications to Volborthite, Vesignieite, and Edwardsite. EPL (Europhys. Lett.) 117, 37006 (2017). arXiv: 1701.05199.
  • S. A. Owerre. Floquet Topological Magnons. J. Phys. Commun. 1, 021002 (2017). arXiv: 1705.04694.
  • S. A. Owerre. Magnetic Order in Laser-Irradiated Kagome Antiferromagnets. J. Phys. Commun. 1, 021001 (2017). arXiv: 1707.01502.
  • S. A. Owerre. Magnonic Analogs of Topological Dirac Semimetals. J. Phys. Commun. 1, 025007 (2017). arXiv: 1610.08869.
  • S. A. Owerre. Noncollinear Antiferromagnetic Haldane Magnon Insulator. J. Appl. Phys. 121, 223904 (2017). arXiv: 1608.00545.
  • S. A. Owerre. Topological Thermal Hall Effect in Frustrated Kagome Antiferromagnets. Phys. Rev. B 95, 014422 (2017). arXiv: 1608.04561.
  • S. A. Owerre. Magnon Hall Effect without Dzyaloshinskii-Moriya Interaction. J. Phys.: Cond. Mat. 29, 03LT01 (2017). arXiv: 1608.08605. For more information on this paper, see https://jphysplus.iop.org/2017/07/31/topological-magnon-bands-without-dzyaloshinkii-moriya-interaction/
  • S. A. Owerre. Magnon edge states in hardcore-Bose-Hubbard model. J. Phys.: Condens. Matter 28, 436003 (2016); arXiv: 1603.07989.
  • S. A. Owerre. Chirality-induced magnon transport in AA-stacked bilayer honeycomb quantum magnets. J. Phys.: Condens. Matter 28 (2016) 47LT02 (Letters); arXiv: 1605.07971.
  • S. A. Owerre. Magnon Hall effect in AB-stacked bilayer honeycomb quantum magnets. Phys. Rev. B 94, 094405 (2016); arXiv: 1604.05292.
  • S. A. Owerre. Topological honeycomb magnon Hall effect: A calculation of thermal Hall conductivity of magnetic spin excitations. J. Appl. Phys. 120, 043903 (2016); arXiv: 1603.04331.
  • S. A. Owerre. A first theoretical realization of honeycomb topological magnon insulator. J. Phys.: Condens. Matter 28, 386001 (2016). arXiv: 1602.06772. IOPSELECT. LabTalk can be found here http://iopscience.iop.org/journal/0953-8984/labtalk/article/65866.
  • S. A. Owerre. Chiral magnetic conductivity and surface states of Weyl semimetals in topological insulator ultra-thin film multilayer. J. Phys.: Condens. Matter 28, 235501 (2016); arXiv: 1602.00618.
  • S. A. Owerre, A. A. Burkov, and R. G. Melko. A Large-S Study of Quantum Kagome Ice. Phys. Rev. B 93, 144402 (2016); arXiv: 1512.03930.
  • S. A. Owerre. Ground state properties of quantum triangular ice. Phys. Rev. B 93, 094436 (2016); arXiv: 1511.01843