Le contenu de cette page n’est pas disponible en français. Veuillez nous en excuser.
 

4-Corner Southwest Ontario Condensed Matter Symposium 2013

Conference Date: 
Jeudi, Avril 25, 2013 (All day)
Scientific Areas: 
Condensed Matter

 

This sixth annual one-day symposium aims to provide an opportunity for condensed matter researchers in southwest Ontario to gather together and discuss informally their most recent research. The general format of the meeting consists of two guest speakers and 5-7 contributed talks. The names of the contributing speakers and title of their talks will be announced later. Registration begins at 9:30 am. The meeting is expected to start around 9:45 am and end between 5-5:30 pm. A lunch will be provided by the Black Hole Bistro.

There will be two keynote speakers for the sympoisum:  Professor Steve Kivelson from Stanford University, and Professor Radu Coldea from Oxford University.  Professor Kivelson's talk is entitled "Theoretically Established States with a Pseudo-Fermi Surface" while Professor Coldea's talk is "Reaching Experimentally Quantum Criticality: A Playground to Explore Novel Correlated Quantum States of Matter."

Past speakers for this event were as follows:

2012

  • Paul Chaikin, New York University
  • Patrick Lee, Massachusetts Institute of Technology

2011

  • Seamus Davvis, Cornell University
  • Eduardo Fradkin, University of Illinois at Urbana-Champaign

2010

  • Leon Balents, Kavli Institute for Theoretical Physics

2009

  • Piers Coleman, Rutgers University
  • Bill Halperin, Northwestern University

2008

  • Collin Broholm, Johns Hopkins University
  • Subir Sachdev, Harvard University

Registration for this event is now closed.

  • Lukasz Cincio, Perimeter Institute
  • Pat Clancy, University of Toronto
  • Radu Coldea, University of Oxford
  • Katharina Fritsch, McMaster University
  • Zhihao Hao, University of Waterloo
  • Steve Kivelson, Stanford University
  • Jan Kycia, University of Waterloo
  • Zhou Li, McMaster University
  • Matteo Mariantoni, University of Waterloo
  • Bill Atkinson, Trent University
  • Peter Barfuss, University of Waterloo
  • David Bazak, McMaster University
  • John Berlinsky, Perimeter Insitute
  • Anton Burkov, University of Waterloo
  • Jules Carbotte, McMaster University
  • Yangang Chen, Perimeter Insitute
  • Lukasz Cincio, Perimeter Institute
  • Patrick Clanc,y University of Toronto
  • Radu Coldea, University of Oxford
  • Alexandre Da,y University of Waterloo
  • John de Bruyn, University of Western Ontario
  • Andreas Deschner, McMaster University
  • Robert D'Ortenzio, McMaster University
  • Katharina Fritsch, McMaster University
  • Bruce Gaulin, McMaster University
  • Ruiping Ge, University of Western Ontario
  • Sedigh Ghamari, McMaster University
  • Michel Gingras, University of Waterloo
  • Jesse Hall, McMaster University
  • Zhihao Hao, University of Waterloo
  • David Hawthorn, University of Waterloo
  • Lauren Hayward, University of Waterloo
  • Robert Hill, University of Waterloo
  • Tim Hsieh, Massachusetts Institute of Technology / Perimeter Institute
  • Wen Huang, McMaster University
  • Stephen Inglis, University of Waterloo
  • Behnam Javanparast, University of Waterloo
  • Ann Kallin, University of Waterloo
  • Edwin Kermarrec, McMaster University
  • Alison Kinross, McMaster University
  • Steve Kivelson, Stanford University
  • Stefan Kycia, University of Guelph
  • Sung-Sik Lee, McMaster University / Perimeter Institute
  • Keith Lee, Perimeter Insitute
  • Zhou Li, McMaster University
  • Taoran Lin, University of Waterloo
  • Peter Lunts, Perimeter Institute
  • Andreea Lupascu, University of Toronto
  • Xiaopan Mao, University of Waterloo
  • Matteo Mariantoni, Institute for Quantum Computing
  • Casey Marjerrison, McMaster University
  • Christopher McMahon, University of Waterloo
  • Teresa Medina, McMaster University
  • Roger Melko, University of Waterloo
  • Kevin Mortimer, McMaster University
  • Maryam Mozaffari, University of Western Ontario
  • Timothy Munsie, McMaster University
  • Elisabeth Nicol, University of Guelph
  • Boris Pavlovic, University of Guelph
  • Robert Pfeifer, Perimeter Institute
  • David Pomaranski, University of Waterloo
  • Pavlo Pyatkovskiy, Western University Canada
  • Erik Sorensen, McMaster University
  • Shouvik Sur, McMaster University
  • Calvin Tabert, University of Guelph
  • Makoto Tachibana, McMaster University
  • Evelyn Tang, Massachusetts Institute of Technology / Perimeter Institute
  • Edward Taylor, McMaster University
  • Thomas Timusk, McMaster University
  • William Toews, University of Waterloo
  • Guifre Vidal, Perimeter Institute
  • Juven Wang, Massachusetts Institute of Technology / Perimeter Institute
  • Xiao-Gang Wen, Perimeter Insitute
  • Peng Ye, Perimeter Insitute
  • Yohan Yee, McMaster University
  • Jimin Zhang, McMaster University
Time Event Location
9:00 - 9:55 am Registration and Coffee Reception
9:55 - 10:00 am

Welcome Address
Michel Gingras, University of Waterloo

Lazaridis Theater

 

Morning Session
Chair: Bruce Gaulin, McMaster University

Lazaridis Theater

10:00 - 11:00 am

Radu Coldea, Oxford University
Reaching Experimentally Quantum Criticality:
A Playground to Explore Novel Correlated 
Quantum States of Matter

Lazaridis Theater

11:00 - 11:30 am Zhihao Hao, University of Waterloo  
Spin-1/2 Heisenberg Antiferromagnet on the Kagome Lattice: a Z2 Spin Liquid with Fermionic Spinons

Lazaridis Theater

11:30 - 12:00 pm Matteo Mariantoni, University of Waterloo  
The Quantum von Neumann Architecture and the Future of Quantum Computing with Superconducting Circuits

Lazaridis Theater

12:00 - 1:30 pm Lunch Break Black Hole Bistro
  Afternoon Session   
Chair: Anton Burkov, University of Waterloo

Lazaridis Theater

1:30 - 2:30 pm Steve Kivelson, Stanford University  
Theoretically Established States with a
Pseudo-Fermi Surface

Lazaridis Theater

2:30 - 3:00 pm Jan Kycia, University of Waterloo  
Absence of Pauling's Residual Entropy in Dy2Ti2O

Lazaridis Theater

3:00 - 3:30 pm Katharina Fristsch, McMaster University  
New Neutron Scattering Results on the Enigmatic Ground State of the Pyrochlore Magnet Tb2Ti2O7

Lazaridis Theater

3:30 - 3:40 pm Conference Photo Atrium
3:40 - 4:00 pm Coffee Break Black Hole Bistro
  Afternoon Session   
Chair: David Hawthorn, University of Waterloo

Lazaridis Theater

4:00 - 4:30 pm Lukasz Cincio, Perimeter Institute  
Tensor Networks: an Overview

Lazaridis Theater

4:30 - 5:00 pm Zhou Li, McMaster University  
Higgs Boson in Condensed Matter:  
From Polaron to Topological Insulator

Lazaridis Theater

5:00 - 5:30 pm Pat Clancy, University of Toronto  
Diluted Magnetism in Iridates:
Studies of Rh-doped Sr2Ir2O4

Lazaridis Theater

5:30 - 5:35 pm

Closing Address
Michel Gingras, University of Waterloo

Lazaridis Theater

 

Lukasz Cincio, Perimeter Institute

Tensor Networks: an Overview

Tensor network algorithms provide highly competitive tools for analyzing ground state properties of quantum lattice models in one and two spatial dimensions. The most notable examples involve matrix product states, projected entangled pair states and multiscale entanglement renormalization ansatz. The key underlying idea of all the approaches is to decompose a quantum many-body state into a carefully chosen network of tensors.  In this talk I will give an introduction to the subject and show how tensor networks can be used to characterize topological order.

Pat Clancy, University of Toronto

Studies of Rh-doped Sr2Ir2O4

The physics of iridium-based 5d transition metal oxides has attracted significant interest due to the potential for exotic magnetic and electronic ground states driven by strong spin-orbit coupling effects. Among the most extensively studied iridates is the layered perovskite Sr2IrO4, which was recently proposed as the first experimental realization of a novel Jeff=1/2 spin-orbital Mott insulating state. Intriguing similarities between Sr2IrO4 and La2CuO4, the parent compound of the high-Tc cuprates, have also led to speculation that it may be possible to induce superconductivity in this system through chemical doping. We have investigated the magnetic properties of the doped system Sr2Ir1-xRhxO4 using a combination of resonant magnetic x-ray scattering (RMXS), resonant inelastic x-ray scattering (RIXS), and x-ray absorption spectroscopy (XAS) techniques. These measurements reveal the effect of Rh-doping on the magnetic structure, phase diagram, and characteristic magnetic excitations of Sr2IrO4, and provide fundamental information about the role of quenched Rh impurities.

Radu Coldea, University of Oxford

Reaching Experimentally Quantum Criticality: A Playground to Explore Novel Correlated Quantum States of Matter

Realizing experimentally continuous phase transitions in the electronic ground state of materials near zero temperature as a function of tuning some external parameter (magnetic field, pressure etc.) offers a unique opportunity to probe the extreme regime (near the transition point) where strong quantum correlations encompass the macroscopic sample as a whole, so called “quantum criticality” [1]. In this regime of strong correlations small perturbations/interactions can stabilize novel forms order or collective fluctuations that otherwise do not exist. One of the theoretically most studied paradigms for quantum criticality is a chain of Ising spins driven by a transverse field to a critical point separating spontaneous magnetic order and paramagnetic phases. We have realized this system experimentally by applying strong magnetic fields to the quasi-one-dimensional Ising ferromagnet CoNb2O6 and have probed via single-crystal inelastic neutron scattering the evolution of the magnetic order and spin excitation spectrum as a function of applied field at mili-Kelvin temperatures [2]. Near the critical point the spin excitations were theoretically predicted nearly two decades ago to have a set of quantum resonances (collective modes of vibration of the interacting spins) with universal ratios between their frequencies reflecting an exceptional mathematical structure of the quantum many-body eigenstates with a “hidden” E8 symmetry governing the physics in the scaling limit. Experiments indeed observed evidence for a spectrum of resonances and the ratio between the frequencies of the two lowest modes approached the "golden ratio" near the critical point, as predicted by field theory. As a second example of novel physics near quantum criticality I will discuss how an amplitude-modulated incommensurate spin-density wave (SDW) order appears near the field-induced critical point in the quasi-1D spin-1/2 XY antiferromagnet Cs2CoCl4. Incommensurate SDWs are very uncommon in magnetic insulators and are not stable zero-temperature ground states at the classical mean-field level, we propose that here such a state is stabilized by the strong quantum fluctuations associated with the proximity to the critical point and the weak frustrated inter-chain couplings.   

[1] S. Sachdev, in Quantum Phase Transitions (Cambridge, 2011); S. Sachdev and B. Keimer, Physics Today 64, 29 (2011).

[2] R. Coldea et al., Science 327, 177 (2010). 

Spin excitations in the Ising chain magnet CoNb2O6: data and calculation [2]. 

Katharina Fritsch, McMaster University

New Neutron Scattering Results on the Enigmatic Ground State of the Pyrochlore Magnet Tb2Ti2O7

The ground state of the candidate spin liquid pyrochlore magnet Tb2Ti2O7 (TTO) has been long debated. Despite theoretical expectations of magnetic order below ~1K based on classical Ising-like Tb3+ spins, earlier muSR and neutron scattering experiments showed no long range order down to 50mK. This motivated two theoretical scenarios to account for the apparently disordered ground state: a quantum spin ice scenario and a non-magnetic singlet ground state. I will discuss new neutron scattering measurements on TTO that show short range spin correlations developing below ~ 0.5 K with a (½, ½, ½) ordering wavevector, and a concomitant opening of a spin gap across most of the Brillouin zone. Our measurements also refine the crystal field ground state for Tb3+ in TTO and in its sister, “soft” spin ice compound Tb2Sn2O7.

Zhihao Hao, University of Waterloo

Spin-1/2 Heisenberg Antiferromagnet on the Kagome Lattice: a Z2 Spin Liquid with Fermionic Spinons

Motivated by recent numerical and experimental studies of the spin-1/2 Heisenberg antiferromagnet on kagome, we formulate a many-body model for fermionic spinons, which are just uncoupled spins. The spinons interact with an emergent U(1) gauge field and experience strong short-range attraction in the S=0 channel. The ground state of the model is generically a Z(2) liquid. We calculate the edge of the two-spinon continuum and compare the theory to the slave-fermion approach to the Heisenberg model.

Steve Kivelson, Stanford University

Theoretically Established States with a Pseudo-Fermi Surface

The Fermi liquid phase of interacting electrons is familiar as the basis of our understanding of the low temperature behavior of “good” metals; it is, moreover, deceptively simple due to its smooth connection with non-interacting electrons.  However, upon closer examination, the Fermi liquid is among the most remarkable of all quantum phases of matter – one would be tempted to call it “exotic” were it not theoretically understood and experimentally well characterized.  Building on this understanding, I will demonstrate the existence of stable quantum phases ofmatter with “pseudo-Fermi-surfaces” – that is exotic phases with fermionic quasiparticles that are asymptotically free on a sharply defined surface in k-space, but which carry quantum numbers unrelated to those of the constituent electrons.  Examples that will be explored include superconducting states in which the Bogoliubov quasiparticles are gapless on a pseudo-Fermi-surface, and various spin-liquids in which the quasiparticles are spinons.  Candidate materials where some of these states may occur will also be mentioned. 

Jan Kycia, University of Waterloo

Absence of Pauling's Residual Entropy in Dy2Ti2O7

The discovery of the spin-ice phase in Dy2Ti2O7 numbers among the most significant findings in magnetic materials in over a decade. The spin-ice model is based on an elegant analogy to Pauling’s model of geometrical frustration in water ice, and predicts the same residual entropy, as confirmed by numerous
measurements. Melko, den Hertog and Gingras, with numerical work using a loop algorithm to speed up equilibration times, were able to determine an ordering for this system. This had not been seen experimentally observed by several groups. I will present new experimental results for the specific heat
of Dy2Ti2O7, demonstrating why previous measurements were unable to correctly capture its low temperature behaviour. By carefully tracking the flow of heat into and out of the material, we observe a non-vanishing specific heat at low temperatures indicating the residual entropy does not actually agree with the Pauling value.
 
Zhou Li, McMaster University
 
Higgs Boson in Condensed Matter: From Polaron to Topological Insulator
 
In this talk I will briefly review the polaron physics, which has helped theorists to conceive the BCS theory of conventional superconductors as well as experimentalists to discover high temperature superconductors in the cuprates. Specifically I will talk about how charge carriers obtain their
masses from coupling to the phonon field in one, two, three or higher dimensions. More recently, there is increasing interest in topological insulators where a gap can be opened which may suggest new version of Higgs mechanism in condensed matter.
 
Matteo Mariantoni, University of Waterloo
 
The Quantum von Neumann Architecture and the Future of Quantum Computing with Superconducting Circuits
 
Superconducting quantum circuits have made significant advances over the past decade, allowing more complex and integrated circuits that perform with good fidelity. We have recently implemented a machine comprising seven quantum channels, with three superconducting resonators, two phase qubits, and two
zeroing registers. I will explain the design and operation of this machine, first showing how a single microwave photon |1> can be prepared in one resonator and coherently transferred between the three resonators [1]. I will then demonstrate how this machine can be used as the quantum-mechanical analog of the von Neumann computer architecture, which for a classical computer comprises a central processing unit and a memory holding both instructions and data. The quantum version comprises a quantum central processing unit (quCPU) that exchanges data with a quantum random-access memory (quRAM) integrated on one chip, with instructions stored on a classical computer [2]. Finally, I will demonstrate that the quantum von Neumann machine provides one unit cell of a two-dimensional qubit-resonator array that can be used for surface code quantum computing. This will allow the realization of a scalable, fault-tolerant quantum processor with the most forgiving error rates to date [3].
[1] M. Mariantoni et al., Nature Physics 7, 287-293 (2011)
[2] M. Mariantoni et al., Science 334, 61-65 (2011)
[3] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, Phys. Rev. A 86, 032324 (2012)
 
 
Organizers: