Quantum Gravity 2020

COVID-19 information for PI Residents and Visitors

Conference Date: 
Monday, July 13, 2020 (All day) to Friday, July 17, 2020 (All day)
Pirsa Collection: 
Scientific Areas: 
Cosmology
Particle Physics
Quantum Foundations
Quantum Gravity
Quantum Information


Important Information Regarding COVID-19 Coronavirus
Due to the COVID-19 pandemic, this event will now take place virtually.


The conference “Quantum Gravity 2020“ has a deliberately broad scope. We aim to include participants from all current approaches to quantum gravity, as well as researchers working on the phenomenology of quantum gravity. The main goal of the meeting is to assess the progress made and to constructively and openly discuss open questions in our understanding of quantum gravity.

A second goal is to work towards combining the insights gained in the various approaches. In its overall goal as well as the format, this conference will differ from more specialized meetings that focus on specific quantum-gravity approaches.

We hope that this inaugural conference “Quantum Gravity“ can make a contribution to bridging the gaps between quantum gravity approaches, and bring the entire community together for a constructive and fruitful exchange.

The deadline to register for this event is April 30, 2020.  Registration will close before this date if capacity is met. Registration for this event is now closed.

Sponsorship for this event has been provided by:

 

  • Sylvain Carrozza, Perimeter Institute
  • Clifford Cheung, California Institute of Technology
  • Netta Engelhardt, Massachusetts Institute of Technology
  • Steve Giddings, University of California, Santa Barbara
  • Daniel Harlow, Massachusetts Institute of Technology
  • Ted Jacobson, University of Maryland
  • Renate Loll, Radboud University Nijmegen
  • Henry Maxfield, University of California, Santa Barbara
  • Hermann Nicolai, Albert Einstein Institute
  • Monica Pate, Harvard University
  • Alejandro Perez, Centre de Physique Theorique de Luminy
  • Mairi Sakellariadou, King's College London
  • Frank Saueressig, Radboud University Nijmegen
  • Sumati Surya, Raman Research Institute
  • Herman Verlinde, Princeton University
  • Aron Wall, University of Cambridge
  • Silke Weinfurtner, Nottingham University

 

  • Niayesh Afshordi, Perimeter Institute & University of Waterloo
  • Ivan Agullo, Louisiana State University
  • Ahmed Almheiri, Institute for Advanced Study
  • Chris Akers, Massachusetts Institute of Technology
  • Dionysios Anninos, Kings College London
  • Cesar Arias, University of California, Davis
  • Danilo Artigas Guimarey, Aix-Marseille University
  • Michele, Arzano, Istituto Nazionale di Fisica Nucleare
  • Seth Kurankyi Asante, Perimeter Institute
  • Ivana Babić, Ludwig-Maximilians-Universität München
  • Angel Ballesteros, Universidad de Burgos
  • Glenn Barnich, Université Libre de Bruxelles
  • Heliudson Bernardo, McGill University
  • Emil Bjerrum-Bohr, Niels Bohr Institute
  • Martin Bojowald, Pennsylvania State University
  • Francisco Borges, Perimeter Institute
  • Suddhasattwa Brahma, McGill University
  • Robert Brandenberger, McGill University
  • Timothy Budd, Radboud University Nijmegen
  • Luca Buoninfante, Tokyo Institute of Technology
  • Cliff Burgess, Perimeter Institute & McMaster University
  • ChunJun Cao, University of Maryland
  • Steven Carlip, University of California, Davis
  • Alicia Castro, Radboud University Nijmegen
  • Venkatesa Chandrasekaran, University of California, Berkeley
  • Lin-Qing Chen, Okinawa Institute of Science and Technology
  • David Craig, Oregon State University
  • Sean Crowe, Jagiellonian University
  • William Cunningham, Perimeter Institute
  • Erik Curiel, Ludwig-Maximilians-Universitat Munchen
  • Marco de Cesare, University of New Brunswick
  • Fay Dowker, Imperial College London
  • Maïté Dupuis, Perimeter Institute
  • Nick Early, Perimeter Institute
  • Joshua Erlich, William & Mary
  • Llorenç Espinosa-Portalés, Instituto de Física Teórica
  • Renata Ferrero, Johannes Gutenberg University of Mainz
  • Sebastian Fischetti, McGill University
  • Guilherme Franzman, NORDITA
  • Klaus Fredenhagen, University of Hamburg
  • Laurent Freidel, Perimeter Institute
  • Tobias Fritz, Perimeter Institute
  • Markus Fröb, Leipzig University
  • Nava Gaddam, Utrecht University
  • Rodolfo Gambini, Universidad de Montevideo
  • Marc Geiller, École normale supérieure
  • Ghazal Geshnizjani, Perimeter Institute & University of Waterloo
  • Elliott Gesteau, Perimeter Institute
  • Mahdis Ghodrati, Yangzhou University & Shanghai Jiaotong University
  • Flaminia Giacomini, Perimeter Institute
  • Serena Giardino, University of Szczecin
  • Cecilia Giavoni, Ludwig-Maximilians-Universitat Munchen
  • Lisa Glaser, University of Vienna
  • Finnian Gray, Perimeter Institute
  • Giulia Gubitosi, University of Burgos
  • Shahar Hadar, Harvard University
  • Hal Haggard, Bard College
  • Sabine Harribey, Centre de Physique Théorique
  • Aaron Held, Imperial College London
  • Yannick Herfray, Université Libre de Bruxelles
  • Sergio Hoertner, University of Amsterdam
  • Philipp Höhn, Okinawa Institute of Science and Technology
  • Vahid Hosseinzadeh, Institute for Fundamental Research in Science
  • Xuyao Hu, New York University
  • Viqar Husain, University of New Brunswick
  • Anna Ijjas, Max Planck Institute for Gravitational Physics
  • Michael Imseis, University of Waterloo
  • Ding Jia, Perimeter Institute
  • Clifford Johnson, University of Southern California
  • Wojchech Kaminski, University of Warsaw
  • Jarod Kelly, University of New Brunswick
  • Josh Kirklin, University of Cambridge
  • John Klauder, Retired from the University of Florida
  • Benjamin Knorr, Perimeter Institute
  • David Kubiznak, Perimeter Institute
  • Folkert Kuipers, University of Sussex
  • Ohkyung Kwon, University of Chicago
  • Matteo Laudonio, University of Bordeaux
  • Wei Li, Chinese Academy of Sciences
  • Stefano Liberati, SISSA
  • Mercedes Martin-Benito, Universidad Complutense de Madrid
  • Pedro Jorge Martínez, Instituto de Física La Plata
  • Alex May, University of British Columbia
  • Christoph Minz, University of York
  • Seyed Faroogh Moosavian, McGill University
  • Javier Moreno, Pontifical Catholic University of Valparaíso
  • Emil Mottola, Los Alamos National Laboratory
  • Harish Murali, Purdue University
  • Yasha Neiman, Okinawa Institute of Science and Technology
  • Dominik Neuenfeld, Perimeter Institute
  • Kevin Nguyen, Harvard University
  • Daniele Oriti, Ludwig-Maximilians-Universität München
  • Naritaka Oshita, Perimeter Institute
  • Eran Palti, Max Planck Institute for Physics
  • Qiaoyin Pan, Perimeter Institute
  • Martin Pauly, Heidelberg University
  • Sylvie Paycha, University of Potsdam
  • Gustavo Pazzini de Brito, Brazilian Center for Research in Physics
  • Roberto Percacci, SISSA
  • Antonio Pereira, Fluminense Federal University
  • Włodzimierz Piechocki, National Centre for Nuclear Research
  • Alessia Platania, Heidelberg University
  • Axel Polaczek, University of Sheffield
  • Daniele Pranzetti, Perimeter Institute
  • Jorge Pullin, Louisiana State University
  • Pratik Rath, University of Califronia, Berkeley
  • Manuel Reichert, CP3-Origins University of Southern Denmark
  • Katarzyna Rejzner, University of YKatarzynaork
  • Chris Ripken, Johannes Gutenberg-University Mainz
  • Vincent Rivasseau, Université Paris-Saclay
  • Germain Rousseaux, University of Poitiers
  • Shan-Ming Ruan, Perimeter Institute
  • Guilherme Sadovski, Okinawa Institute of Science and Technology
  • Mustafa Saeed, University of New Brunswick
  • Robert Santacruz, University of New Brunswick
  • Susanne Schander, University of Erlangen
  • Marc Schiffer, Heidelberg University
  • Marc Schneider, Pennsylvania State University
  • Arvin Shahbazi-Moghaddam, University of California, Berkeley
  • Vasudev Shyam, Perimeter Institute
  • José Diogo Simão, Friedrich-Schiller-Universität Jena
  • Ashmeet Singh, California Institute of Technology
  • Tejinder Pal Singh, Tata Institute of Fundamental Research
  • Lee Smolin, Perimeter Institute
  • Thomas Sotiriou, University of Nottingham
  • Antony Speranza, Perimeter Institute
  • Simone Speziale, Centre de Physique Théorique
  • Sebastian Steinhaus, Friedrich-Schiller-Universität Jena
  • Christian Steinwachs, University of Freiburg
  • Vincent Su, University of California, Berekely
  • Tadashi Takayanagi, Yukawa Institute for Theoretical Physics
  • Johannes Thürigen, University of Münster
  • Jessica Thomas, American Physical Society
  • Tomasz Trzesniewski, Jagiellonian University
  • Deepak Vaid, National Institute of Technology Karnataka
  • Mark van Raamsdonk, University of British Columbia
  • Manus Visser,  University of Geneva 
  • Matthew Walhout, John Templeton Foundation
  • Jinzhao Wang, ETH Zurich
  • Yixu Wang, University of Maryland
  • Yoshiyuki Watabiki, Tokyo Institute of Technology
  • Wolfgang Wieland, Perimeter Institute
  • Edward Wilson-Ewing, University of New Brunswick
  • Michael Florian Wondrak, Goethe University Frankfurt
  • Gabriel Wong, Fudan University
  • Yigit Yargic, Perimeter Institute
  • Cedric Yu, New York University
  • Yasaman Yazdi, Imperial College London
  • Jose A. Zapata, Universidad Nacional Autonoma de Mexico
  • Yun-Long Zhang, Yukawa Institute for Theoretical Physics

Monday, July 13, 2020

Time

Event

Location

8:30 – 9:20am
EDT

Meet and Greet

Virtual

9:20 – 9:30am
EDT

Bianca Dittrich, Perimeter Institute
Welcome and Opening Remarks

Virtual

9:30 – 10:30am
EDT

Hermann Nicolai, Albert Einstein Institute
Approaches to Quantum Gravity:
Key Achievements and Open Issues

Virtual

10:30 – 11:00am
EDT

Break

Virtual

11:00 – 12:00pm
EDT

Poster Session

Virtual

12:00 – 12:30pm
EDT

Break

Virtual

12:30 – 1:15pm
EDT

Alejandro Perez, Centre de Physique Theorique de Luminy
Quantum gravity from the loop perspective

Virtual

1:15 – 2:00pm
EDT

Daniel Harlow, Massachusetts Institute of Technology
Lessons for quantum gravity from quantum information theory

Virtual

2:00 - 3:00pm
EDT

Hang Out/Collaboration Sessions

Virtual


Tuesday, July 14, 2020

Time

Event

Location

8:00 - 9:00am
EDT

Hang Out/Collaboration Sessions

Virtual

9:00 – 9:45am
EDT

Herman Verlinde, Princeton University
Understanding of QG from string theory

Virtual

9:45 – 10:30am
EDT

Aron Wall, University of Cambridge
Progress in horizon thermodynamics

Virtual

10:30 – 11:00am
EDT

Break

Virtual

11:00 – 11:45am
EDT

Frank Saueressig, Radboud University Nijmegen
Asymptotically Safe Amplitudes from the Quantum Effective Action

Virtual

11:45 – 12:30pm
EDT

Renate Loll, Radboud University Nijmegen
The Remarkable Roundness of the Quantum Universe

Virtual

12:30 – 1:00pm
EDT

Break

Virtual

1:00 – 2:00pm
EDT

Parallel Discussion Session
Ahmed Almheiri, Institute for Advanced Study
Black-hole information paradox

Virtual

1:00 – 2:00pm
EDT

Parallel Discussion Session
Viqar Husain, University of New Brunswick
Foundational/interpretational aspects of QG

Virtual

1:00 – 2:00pm
EDT

Parallel Discussion Session
Kasia Rejzner, University of York
Lorentzian vs. Euclidean Quantum Gravity

Virtual

1:00 – 2:00pm
EDT

Parallel Discussion Session
Sebastian Steinhaus, Friedrich-Schiller-Universität Jena
Renormalization in QG

Virtual

2:00 - 3:00pm
EDT

Hang Out/Collaboration Sessions

Virtual


Wednesday, July 15, 2020

Time

Event

Location

8:00 - 9:00am
EDT

Hang Out/Collaboration Sessions

Virtual

9:00 – 9:45am
EDT

Sumati Surya, Raman Research Institute
The Quantum Dynamics  of Causal Sets: Directions and Challenges

Virtual

9:45 – 10:30am
EDT

Silke Weinfurtner, Nottingham University
Towards quantum simulators for fundamental physics

Virtual

10:30 – 11:00am
EDT

Break

Virtual

11:00 – 12:00pm
EDT

Parallel Discussion Session
Sebastian Fischetti, McGill University
Lessons from Holography: Beyond AdS

Virtual

11:00 – 12:00pm
EDT

Parallel Discussion Session
Marc Geiller, École normale supérieure
Asymptotic & Boundary Symmetries

Virtual

11:00 – 12:00pm
EDT

Parallel Discussion Session
Hal Haggard, Bard College
Lessons from Low-Dimensional Gravity: Black Holes, Topology Change, and Thermality

Virtual

11:00 – 12:00pm
EDT

Parallel Discussion Session
Antonio Pereira, Fluminense Federal University
The Planck length, the continuum limit and all that

Virtual

12:00 – 12:30pm
EDT

Break

Virtual

12:30 – 1:15pm
EDT

Clifford Cheung, California Institute of Technology
From Gluon Scattering to Black Hole Orbits

Virtual

1:15 – 2:00pm
EDT

Steve Giddings, University of California, Santa Barbara
Mathematical structure of quantum gravity

Virtual

2:00 - 3:00pm
EDT

Hang Out/Collaboration Sessions

Virtual


Thursday, July 16, 2020

Time

Event

Location

8:00 - 9:00am
EDT
Hang Out/Collaboration Sessions Virtual

9:00 – 10:00am
EDT

Parallel Discussion Session
Robert Brandenberger, McGill University
De Sitter in/from QG

Virtual

9:00 – 10:00am
EDT

Parallel Discussion Session
Giulia Gubitosi, University of Burgos
Observational consistency of QG with particle physics

Virtual

9:00 – 10:00am
EDT

Parallel Discussion Session
Daniele Oriti, Ludwig-Maximilians-Universität München
Connecting quantum gravity formalisms: how to combine insights and techniques?

Virtual

9:00 – 10:00am
EDT

Parallel Discussion Session
Thomas Sotiriou, University of Nottingham
Observations at the interface of strong gravity and QG

Virtual

10:00 – 10:30am
EDT

Break

Virtual

10:30 – 11:15am
EDT

Mairi Sakellariadou, King's College London
Quantum gravity signals in cosmology and gravitational waves

Virtual

11:15 – 12:00pm
EDT

Netta Engelhardt, Massachusetts Institute of Technology
Free Energy from Replica Wormholes

Virtual

12:00 – 12:30pm
EDT

Break

Virtual

12:30 – 1:15pm
EDT

Monica Pate, Harvard University
Soft modes in quantum gravity

Virtual

1:15 – 2:00pm
EDT

Henry Maxfield, University of California, Santa Barbara
Black hole information, spacetime wormholes, and baby universes

Virtual

2:30 - 3:00pm
EDT
Cocktails Virtual
3:00 - 5:00pm
EDT
Dinner Virtual


Friday, July 17, 2020

Time

Event

Location

8:00 - 9:00am
EDT

Hang Out/Collaboration Sessions

Virtual

9:00 – 9:20am
EDT

Lin-Qing Chen, Okinawa Institute of Science and Technology
Virasoro hair and entropy for axisymmetric Killing horizons

Virtual

9:20 – 9:40am
EDT

Christoph  Minz, University of York
Sprinklings in Causal Set Theory and Local Structures to Discretize Field Propagators

Virtual

9:40 – 10:00am
EDT

Manuel Reichert, CP3-Origins University of Southern Denmark
Dark Matter meets Quantum Gravity

Virtual

10:00 – 10:30am
EDT

Break

Virtual

10:30 – 11:15am
EDT

Sylvain Carrozza, Perimeter Institute
Random tensors, melonic theories and quantum gravity

Virtual

11:15 – 11:45am
EDT

Break

Virtual

11:45 – 12:45pm
EDT

Parallel Discussion Session
Philipp Höhn, Okinawa Institute of Science and Technology
Time in quantum gravity

Virtual

11:45 – 12:45pm
EDT

Parallel Discussion Session
Anna Ijjas, Max Planck Institute for Gravitational Physics
Quantum cosmology and future observations

Virtual

11:45 – 12:45pm
EDT

Parallel Discussion Session
Stefano Liberati, SISSA
Promising frontiers in QG phenomenology

Virtual

11:45 – 12:45pm
EDT

Parallel Discussion Session
Mark van Raamsdonk, University of British Columbia
Entanglement in QG

Virtual

12:45 – 1:00pm
EDT

Break

Virtual

1:00 – 1:45pm
EDT

Ted Jacobson, University of Maryland
Reflections on quantum gravity in 2020

Virtual

1:45 – 2:00pm
EDT

Closing remarks, announcement from organizers 

Virtual

2:00 - 3:00pm
EDT

Hang Out/Collaboration Sessions

Virtual

 

Sylvain Carrozza, Perimeter Institute

Random tensors, melonic theories and quantum gravity

I will present a brief review of large-N tensor models and their applications in quantum gravity. On the one hand, they provide a general platform to investigate random geometry in an arbitrary number of dimensions, in analogy with the matrix models approach to two-dimensional quantum gravity. Previously known universality classes of random geometries have been identified in this context, with continuous random trees acting as strong attractors. On the other hand, the same combinatorial structure supports a generic family of large-N quantum theories, collectively known as melonic theories. Being largely solvable, they have opened a new window into strongly-coupled quantum theory, and via holography, into quantum gravity. Prime examples are provided by the SYK model and generalizations, which capture essential features of Jackiw-Teitelboim gravity.

Clifford Cheung, California Institute of Technology

From Gluon Scattering to Black Hole Orbits

The study of scattering amplitudes has uncovered extraordinary dualities linking real-world particles such as gravitons, gluons, and pions. We discuss how these developments have been amalgamated with classic tools from effective field theory to derive new results relevant to the search for gravitational waves at LIGO.  This approach has produced now state-of-the-art results on conservative orbital dynamics of binary black holes in the post-Minkowskian expansion. We also comment on recent work extending this framework to include tidal effects and spin.

Steve Giddings, University of California, Santa Barbara

Mathematical structure of quantum gravity

A quantum theory of gravity is expected to be described by a Hilbert space endowed with additional mathematical structure appropriate for describing gravitational physics.  I discuss aspects of this structure that can be inferred perturbatively, along with connections to arguments for holography and nonperturbative questions.

Daniel Harlow, Massachusetts Institute of Technology

Lessons for quantum gravity from quantum information theory

Gravity is unique among the other forces in that within general relativity we are able to do calculations which, when properly interpreted, give us information about non-perturbative quantum gravity.  A classic example is Bekenstein and Hawking's calculation of the entropy of a black hole, and a more recent example is the calculation of the ``Page curve'' for certain evaporating black holes.  A common feature of both of these calculations is that they compute entropies without using von Neumann's formula S=-Tr(\rho \log \rho).  In this strange situation where we are able to compute entropies without understanding the details of the states for which they are the entropy, quantum information theory is a powerful tool that lets us extract information about those states.  In this talk I'll review aspects of these developments, emphasizing in particular the role of quantum extremal surfaces and quantum error correction.

Ted Jacobson, University of Maryland

Reflections on quantum gravity in 2020

Renate Loll, Radboud University Nijmegen

The Remarkable Roundness of the Quantum Universe

It has taken several decades of exploring statistical models of quantum gravity (aka nonperturbative gravitational path integrals) to understand how diffeomorphism-invariance, unitarity and the presence of a causal structure can be simultaneously accounted for in a lattice gravity framework. Causal Dynamical Triangulations (CDT) incorporates all of these features and provides a toolbox for extracting quantitative results from a first-principles quantum formulation, with very few free parameters. Recently, we have introduced the "quantum Ricci curvature", an observable that --somewhat remarkably-- remains meaningful in a maximally nonclassical, Planckian regime. Measuring this curvature in fully-fledged 4D quantum gravity, we have discovered exciting evidence that the quantum universe dynamically generated in CDT is compatible with a constantly curved de Sitter space.

Henry Maxfield, University of California, Santa Barbara

Black hole information, spacetime wormholes, and baby universes

Recent discoveries suggest that semiclassical gravity is more consistent with unitarity than previously believed. I will argue that it makes predictions for the measurements of asymptotic observers that are in complete accord with the idea that black holes are ordinary quantum systems, with states counted by the Bekenstein-Hawking formula. The argument uses the semiclassical gravitational path integral, incorporating newly discovered `spacetime wormhole' topologies. These new ideas revive an old paradigm, relating the information problem to the physics of baby universes.

Hermann Nicolai, Albert Einstein Institute

Approaches to Quantum Gravity: Key Achievements and Open Issues

This talk will provide an overview of current approaches to quantum gravity, with their respective merits and open problems (`comparative quantum gravity'). To this aim I will focus on some key issues that must be addressed by all approaches

Monica Pate, Harvard University

Soft modes in quantum gravity

I will review advances for gravity in asymptotically flat spacetimes arising from investigations into their structure in the infrared.  The recently-discovered infinite-dimensional symmetries of the scattering problem is the central result underlying much of the progress.  Key examples include symmetry-based explanations for the previously-observed universal nature of  infrared phenomena including soft theorems and memory effects.  Moreover, the appearance of a Virasoro symmetry among the symmetries of four-dimensional gravity has led to a proposal for holography in which the scattering amplitudes in quantum gravity are dual to correlation functions of a two-dimensional conformal theory.  The other infinite-dimensional symmetry groups place additional non-trivial constraints on the dual theory.

Alejandro Perez, Centre de Physique Theorique de Luminy

Quantum gravity from the loop perspective

I will summarise the main achievements of loop quantum gravity and provide my view on the  issues that I consider of central importance for present and future efforts.

Mairi Sakellariadou, King's College London

Quantum gravity signals in cosmology and gravitational waves

I will highlight cosmological consequences of models inspired from string theory or non-perturbative approaches to QG. In particular,  I will address the initial singularity, inflation and the late-time accelerated expansion. I will then briefly discuss how recent gravitational waves data can provide a test for some QG models.

Frank Saueressig, Radboud University Nijmegen

Asymptotically Safe Amplitudes from the Quantum Effective Action

This talk will feature a brief introduction to the gravitational asymptotic safety program before reviewing the current status of the field. Motivated by recent developments, I will introduce the form factor formulation of the quantum effective action and explain how various quantum gravity programs can be embedded into this framework. Finally, I will discuss a novel gravity-matter model whose scattering amplitudes exhibit all features expected from Asymptotic Safety.

Sumati Surya, Raman Research Institute

The Quantum Dynamics  of Causal Sets: Directions and Challenges

I will begin with a short review  of causal set theory (CST) focusing on the  features that distinguish it from other approaches to quantum gravity.   Most striking is a  characteristic non-locality due to the Lorentz non-violating  Poisson-discreteness  in the continuum approximation.  The discrete causal structure is rich enough, however, to extract  local continuum geometric information, with geometric and topological observables  corresponding  to order-invariants in the causal set.
These observables  provide the necessary equipment in our search for  a suitable quantum dynamics of causal sets.  I will focus the rest of the talk on recent progress on this journey and the choices and challenges that lie ahead.

Aron Wall, University of Cambridge

Progress in horizon thermodynamics

I will review some developments in horizon thermodynamics from the past few years, highlighting especially the distinct notions of entropy that seem to apply to dynamically evolving black holes, and their extension from classical to semiclassical gravity.

Silke Weinfurtner, Nottingham University

Towards quantum simulators for fundamental physics

Analogue gravity summarises an effort to mimic physical processes that occur in the interplay between general relativity and field theory in a controlled laboratory environment. The aim is to provide insights in phenomena that would otherwise elude observation: when gravitational interactions are strong, when quantum effects are important, and/or on length scales that stretch far beyond the observable Universe. The most promising analogue gravity systems up-to-date are fluids, superfluids, superconducting circuits, ultra-cold atoms and optical systems. While deepening our understanding of the laboratory systems at hand, the long term vision of analogue gravity studies is to advance fundamental physics through interdisciplinary research, by establishing and nurturing a new culture of collaboration between the various communities involved. I will discuss recent efforts to explore the quantum origin of the Universe, accelerated observer radiation, and rotating black hole physics in the laboratory.

 

Angel Ballesteros, Universidad de Burgos

Presentation:  audioBallesteros.mp3

Poster:  

 


Luca Buoninfante, Tokyo Institute of Technology

Presentation:  video-poster-Buoninfante_QG2020.mp4 

Poster:  

 


Alicia Castro, Radboud University Nijmegen

Presentation:  https://youtu.be/WpioE3_WHy0

Poster:  

 


Lin-Qing Chen, Okinawa Institute of Science and Technology

Presentation:  https://www.youtube.com/watch?v=9ZWYS1vFtO4&feature=youtu.be

Poster:  

 


Llorenç Espinosa-Portalés, Instituto de Física Teórica

Presentation:  Video GQ2020 LEP 2.mp4

Poster:  

 


Markus Fröb, Leipzig University

Presentation:  Aufnahme_2.mp3

Poster:

 


Serena Giardino, University of Szczecin

Presentation:  https://www.youtube.com/watch?v=buHcwbRloG8

Poster:  

 


Cecilia Giavoni, Ludwig-Maximilians-Universitat Munchen

Presentation:  CGiavoni_Quantum effects across dynamical horizons.mp4

Poster:

 


Hal Haggard, Bard College

Presentation:  HaggardBlackHoleParticleQG2020 (1).mp4

Poster:  

 


Aaron Held, Imperial College London

Presentation:  qg2020-aaron.mp4

Poster:  

 


Yannick Herfray, Université Libre de Bruxelles

Presentation:  https://youtu.be/3LmAV2TgXZM

Poster:

 


Ding Jia, Perimeter Institute

Presentation:  Ding Jia_trailer.mp4

Poster:

   


Josh Kirklin, University of Cambridge

Presentation:  https://www.youtube.com/watch?v=YlulCyxjUw4&feature=youtu.be

Poster:  

 


David Kubiznak, Perimeter Institute

Presentation:  Taub-NUT_Kubiznak_recorded_compressed.mp4

Poster:

 


Folkert Kuipers, University of Sussex

Presentation:  Recording_FJKuipers.mp3

Poster: 

 


Pedro Jorge Martínez, Instituto de Física La Plata

Presentation:  QG20 Pedro Jorge Martínez.mp4

Poster:

 


Alex May, University of British Columbia

Presentation:  https://youtu.be/2WSKWOf2XZM

Poster:

 


Christoph Minz, University of York

Presentation:  https://youtu.be/gW_ZAsc9kzM

Poster:  

 


Javier Moreno, Pontifical Catholic University of Valparaíso

Presentation:  PosterpresentationQG2020Moreno.mp4

Poster:  

 


Daniele Oriti, Ludwig-Maximilians-Universität München

Presentation:  Oriti-poster-presentation-QG2020.mp4

Poster:  

 


Naritaka Oshita, Perimeter Institute

Presentation:  Naritaka Oshita_movie.mp4

Poster:

 


Martin Pauly, Heidelberg University

Presentation:  intro_martin_pauly.mp4

Poster:  

 


Axel Polaczek, University of Sheffield

Presentation:  https://apolaczek.postgrad.shef.ac.uk/3b5e070cf4.mp4

Poster:  https://apolaczek.postgrad.shef.ac.uk/baa6457c98.png


Manuel Reichert, CP3-Origins University of Southern Denmark

Presentation:  https://youtu.be/-j7f6lgYudE

Poster:  

 


Chris Ripken, Johannes Gutenberg-University Mainz

Presentation:  amplitude_blues.mp4

Poster:  

 


Marc Schiffer, Heidelberg University

Presentation:  https://youtu.be/rQCE3DnaWM8

Poster:  

 


Marc Schneider, Pennsylvania State University

Presentation:  MSchneiderClassvsQuantCompl.mp4

Poster:

 


Vincent Su, Perimeter Institute

Presentation:  Su Hypergraph Presentation QG2020 Compresed.mp4

Poster:

 


Manus Visser, University of Geneva

Presentation:  poster presentation QG2020 final - Manus Visser.mp4

Poster:  

 


Michael Florian Wondrak, Goethe University Frankfurt

Presentation:  Wondrak,_Michael_F-QG2020-T-duality_BH-reduced.mp4

Poster:

 


Cedric Yu, New York University

Presentation Cedric_Yu_QG2020_Presentation.mp3

Poster

 


Yun-Long Zhang, Yukawa Institute for Theoretical Physics

Presentation:  https://youtu.be/skC0XDV-EEc

Poster:  

 

 

 

Friday Jul 17, 2020
Speaker(s): 

I will present a brief review of large-N tensor models and their applications in quantum gravity. On the one hand, they provide a general platform to investigate random geometry in an arbitrary number of dimensions, in analogy with the matrix models approach to two-dimensional quantum gravity. Previously known universality classes of random geometries have been identified in this context, with continuous random trees acting as strong attractors. On the other hand, the same combinatorial structure supports a generic family of large-N quantum theories, collectively known as melonic theories.

Collection/Series: 
 

 

Thursday Jul 16, 2020
Speaker(s): 

Recent discoveries suggest that semiclassical gravity is more consistent with unitarity than previously believed. I will argue that it makes predictions for the measurements of asymptotic observers that are in complete accord with the idea that black holes are ordinary quantum systems, with states counted by the Bekenstein-Hawking formula. The argument uses the semiclassical gravitational path integral, incorporating newly discovered `spacetime wormhole' topologies. These new ideas revive an old paradigm, relating the information problem to the physics of baby universes.

Collection/Series: 
 

 

Thursday Jul 16, 2020
Speaker(s): 

I will review advances for gravity in asymptotically flat spacetimes arising from investigations into their structure in the infrared. The recently-discovered infinite-dimensional symmetries of the scattering problem is the central result underlying much of the progress. Key examples include symmetry-based explanations for the previously-observed universal nature of infrared phenomena including soft theorems and memory effects.

Collection/Series: 
 

 

Thursday Jul 16, 2020
Speaker(s): 

I will highlight cosmological consequences of models inspired from string theory or non-perturbative approaches to QG. In particular, I will address the initial singularity, inflation and the late-time accelerated expansion. I will then briefly discuss how recent gravitational waves data can provide a test for some QG models.

Collection/Series: 

Pages

Scientific Organizers:

  • Bianca Dittrich, Perimeter Institute
  • William Donnelly, Perimeter Institute
  • Astrid Eichhorn, University of Heidelberg & University of Southern Denmark
  • Steffen Gielen, University of Sheffield
  • Robert Myers, Perimeter Institute

Scientific Advisory Committee:

  • Glenn Barnich, Université Libre de Bruxelles
  • Emil Bjerrum-Bohr, Niels Bohr Institute
  • Robert Brandenberger, McGill University
  • Freddy Cachazo, Perimeter Institute
  • Steve Carlip, University of California, Davis
  • Fay Dowker, Imperial College London
  • Laurent Freidel, Perimeter Institute
  • Razvan Gurau, Centre national de la recherche scientifique
  • Veronika Hubeny, University of California, Davis
  • Ted Jacobson, University of Maryland
  • Stefano Liberati, SISSA
  • Etera Livine, École normale supérieure de Lyon
  • Renate Loll, Radboud University Nijmegen
  • Donald Marolf, University of California, Santa Barbara
  • Hermann Nicolai, Albert Einstein Institute
  • Daniele Oriti, Ludwig Maximilian University of Munich
  • Roberto Percacci, SISSA
  • Harvey Reall, University of Cambridge
  • Mairi Sakellariadou, King's College London
  • Frank Saueressig, Radboud University Nijmegen
  • Ralf Scheutzhold, Helmholtz Zentrum, Dresden Rossendorf
  • Lee Smolin, Perimeter Institute
  • Andrew Strominger, Harvard University
  • Tadashi Takayanagi, Yukawa Institute for Theoretical Physics
  • Herman Verlinde, Institute for Advanced Study